Respuesta :

Given : Matrix & Vector multiplication

Matrix and vector can be multiplied if number of columns in one = number of rows in the other. .

Multiplying a vector of (1 row , 3 columns) with matrix of (3 rows, 3 columns) : will give a product matrix of (1 row, 3 columns) - calculated by multiplying each  row with each column

[4 1 2]  x   [ 4  3 2

                  1  5  3

                  1  3  6]

= [ (4)(4) + (1)(3) + (2)(2)         (4)(1) + (1)(5) + (2)(3)    (4)(1) + (1)(3) + (2)(6) ]

[ 16 + 3 + 4                          4 + 5 + 6                        4 + 3 + 8 ]

Resultant product vector : [23    15    15]  

For more information, refer : https://brainly.com/question/12065986?referrer=searchResults

 

Matrix multiplication, the very first structure should have a number of columns equivalent to the 2nd composite row figures, and the further calculation can be defined as follows:

Given :

[tex]\bold{[ 4, 1, 2] \times \left[\begin{array}{ccc}4&3&2\\1&5&3\\1&3&6\end{array}\right] }[/tex]

To find:

multiplication=?

Solution:

  • If the column is one = the row in the other, matrix and vector can be multiplied.
  • The vector of multiplication (1 row, three columns) with a matrix of (3 rows, 3 columns) will be magnified by increasing a production company matrix of (1 row and three columns).

[tex]\to \bold{[ 4, 1, 2] \times \left[\begin{array}{ccc}4&3&2\\1&5&3\\1&3&6\end{array}\right] }[/tex]

[tex]= [ (4)(4) + (1)(3) + (2)(2) \ \ \ \ \ \ \ \ (4)(1) + (1)(5) + (2)(3) \ \ \ \ \ \ \ (4)(1) + (1)(3) + (2)(6) ]\\\\= [ 16 + 3 + 4 \ \ \ \ \ \ \ \ \ \ \ 4 + 5 + 6 \ \ \ \ \ \ \ \ \ \ \ 4 + 3 + 8 ]\\\\= [ 23 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 15 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 15 ]\\\\[/tex]

So, the multiplication "[tex][23\ \ \ 15 \ \ \ 15][/tex]".

  Learn more:

brainly.com/question/13006200