Respuesta :

A linear equation is represented as: [tex]y = mx + b[/tex].

The equation of the line is: [tex]y =3x - 14[/tex]

First, we calculate the slope (m) of [tex]6x + 18y = 11[/tex]

Make y the subject

[tex]18y = -6x + 11[/tex]

Divide by 18

[tex]y = -\frac{1}{3}x + \frac{11}{18}[/tex]

In [tex]y = mx + b[/tex]

[tex]m \to[/tex] slope

So, the slope of [tex]y = -\frac{1}{3}x + \frac{11}{18}[/tex] is:

[tex]m = -\frac 13[/tex]

Since, the line is perpendicular to [tex]6x + 18y = 11[/tex]

The slope of the line is:

[tex]m_1 = -\frac{1}{m}[/tex]

So, we have:

[tex]m_1 = -\frac{1}{-1/3}[/tex]

[tex]m_1 = 3[/tex]

The line passes through (4,-2).

So, the equation is:

[tex]y =m(x - x_1) + y_1[/tex]

This gives:

[tex]y =3(x - 4) -2[/tex]

[tex]y =3x - 12 -2[/tex]

[tex]y =3x - 14[/tex]

Hence, the linear equation is:

[tex]y =3x - 14[/tex]

Read more about  at:

https://brainly.com/question/11897796