Respuesta :
Answer:
Approximately [tex]9.9\; \rm m\cdot s^{-1}[/tex], assuming that this object started from rest, [tex]g = 9.81\; \rm m \cdot s^{-2}[/tex], and that air resistance on this object is negligible.
Explanation:
If the effect of drag on this object is negligible, the acceleration of this object would be constantly equal to [tex]g[/tex], the gravitational field strength ([tex]g \approx 9.81\; \rm m\cdot s^{-2}[/tex] near the surface of the earth.)
Since acceleration is constant, it would be possible to find the final velocity of this object using SUVAT equations.
- Let [tex]v[/tex] and [tex]u[/tex] denote the final and initial velocity of this object, respectively. Under the assumption that this object started from rest, [tex]u = 0\; \rm m \cdot s^{-1}[/tex].
- Let [tex]a[/tex] denote the acceleration of this object. Under the assumptions above, [tex]a = g = 9.81\; \rm m\cdot s^{-2}[/tex].
- Let [tex]x[/tex] denote the displacement of this object. In this question, [tex]x = 5\; \rm m[/tex].
The following SUVAT equation would apply:
[tex]v^{2} - u^{2} = 2\, a\, x[/tex].
Rearrange to find an expression for [tex]v[/tex]:
[tex]\begin{aligned}v^{2} &= 2\, a\, x + u^{2}\end{aligned}[/tex].
[tex]\begin{aligned}v &= \sqrt{2\, a\, x + u^{2}}\end{aligned}[/tex].
Substitute in the values [tex]u = 0\; \rm m\cdot s^{-1}[/tex], [tex]a = 9.81\; \rm m\cdot s^{-2}[/tex], and [tex]x = 5\; \rm m[/tex]. Evaluate the expression to find the value of [tex]v[/tex]:
[tex]\begin{aligned}v &= \sqrt{2\, a\, x + u^{2}} \\ &= \sqrt{2 \times 9.81\; \rm m\cdot s^{-2} \times 5\; \rm m} \\ &\approx 9.9\; \rm m\cdot s^{-1}\end{aligned}[/tex].
Therefore, under these assumptions, the velocity of this object would be approximately [tex]9.9\; \rm m\cdot s^{-1}[/tex] right before it hits the ground.