Respuesta :
Answer:
(2, -2)
Step-by-step explanation:
Solve 7x - 2y = 18 for x:
- [tex]7x - 2y = 18[/tex]
- [tex]7x - 2y + 2y = 18 + 2y[/tex] (Add 2y to both sides)
- [tex]7x = 2y + 18[/tex]
- [tex]\frac{7x}{7} = \frac{2y+18}{7}[/tex] (Divide both sides by 7)
- [tex]x = \frac{2}{7}y+\frac{18}{7}[/tex]
Substitute 2/7y+ 18/7 for x in -4x + 3y = -14
- [tex]-4x + 3y = -14[/tex]
- [tex]-4(\frac{2}{7}y+\frac{18}{7})+3y=-14[/tex]
- [tex]\frac{13}{7}y-\frac{72}{7}=-14[/tex] (Simplify both sides of the equation)
- [tex]\frac{13}{7}y-\frac{72}{7}+\frac{72}{7} =-14+ \frac{72}{7}[/tex] (Add 72/7 to both sides)
- [tex]\frac{13}{7}y=\frac{-26}{7}[/tex]
- [tex]\frac{13}{7}y*\frac{7}{13}=\frac{-26}{7} * \frac{7}{13}[/tex]
- [tex]y = -2[/tex]
Substitute -2 for y in x = 2/7y + 18/7
- [tex]x = \frac{2}{7}y + \frac{18}{7}[/tex]
- [tex]x = \frac{2}{7}(-2) + \frac{18}{7}[/tex]
- [tex]x = 2[/tex] (Simplify both sides of the equation)
Given that x = 2 and y = -2, the point is: (2, -2)
Therefore, the solution is (2, -2).