What is f '(x) for f(x) = secxcscx?

f(x)=secxcscx
let secx=g(x)
let cscx=h(x)
therefore, using leibnitz rule,
f'(x)=g'(x)*h(x)+h'(x)*g(x)
Since derivative of secx=secxtanx
and derivative of cscx=-cscxcotx,
f'(x)=secxtanxcscx -cscxcotxsecx
=1/cosx*sinx/cosx*1/sinx - 1/sinx*cosx/sinx*1/cosx
=1/cos^2x-1/sin^2x
=(sin^2x-cos^2x)/sin^2xcos^2x / Option1
The value of f'(x) is (sin^2x - cos^2x)/sin^2x cos^2x. Thus, option A is correct.
Trigonometric identities are the functions that include trigonometric functions such as sine, cosine, tangents, secant, and, cot.
Given;
f(x) = secx cscx
let secx = g(x)
let cscx = h(x)
Using Leibnitz rule,
f'(x) = g'(x)h(x) + h'(x)g(x)
Since the derivative of secx = secx tanx
derivative of cscx = -cscx cotx,
f'(x) = secx tanx cscx - cscx cotx secx
f'(x) = 1/cosx sinx/cosx 1/sinx - 1/sinx cosx/sinx 1/cosx
f'(x) =1/cos^2x - 1/sin^2x
f'(x) = (sin^2x - cos^2x)/sin^2x cos^2x
Thus, option A is correct.
Learn more about trigonometric;
https://brainly.com/question/21286835
#SPJ2