Respuesta :
[tex]\bull\sf Torque=\tau=20.0\times 10^{-9}Nm[/tex]
[tex]\bull\sf \theta=30°[/tex]
[tex]\bull\sf E=9.0\times C.m=9.0\times 10^{-12}N/C[/tex]
Now we know
[tex]\\ \sf\longmapsto \tau=pEsin\theta[/tex]
[tex]\\ \sf\longmapsto p=\dfrac{\tau}{Esin\theta}[/tex]
[tex]\\ \sf\longmapsto p=\dfrac{20\times 10^{-9}}{9\times 10^{-12}\times sin30}[/tex]
[tex]\\ \sf\longmapsto p=\dfrac{20\times 10^{-9}}{9\times 10^{-12}\times \dfrac{1}{2}}[/tex]
[tex]\\ \sf\longmapsto p=\dfrac{20\times 10^{-9}}{9\times 10^{-12}}\times 2[/tex]
[tex]\\ \sf\longmapsto p=4.4\times 10^3N/C[/tex]
The magnitude of the externla electric field is 4,444.44 N/C.
The magnitude of the charge is 3.1 x 10⁻¹² C.
Magnitude of the external electric field
The magnitude of the externla electric field is calculated as follows;
EPsinθ = τ
where;
- E is the external electric field
- P is dipole moment
- τ is torque
[tex]E = \frac{\tau}{P sin(\theta)} \\\\E = \frac{20 \times 10^{-9}}{9\times 10^{-12} \times sin(30)} \\\\E = 4,444.44 \ N/C[/tex]
Magnitude of the charge
The magnitude of the charge is calculated as follows;
[tex]E = \frac{kQ}{r^2} \\\\Q = \frac{Er^2}{k} \\\\Q = \frac{(4,444.44) \times (2.5 \times 10^{-3})^2}{(9\times 10^9)} \\\\Q = 3.1 \times 10^{-12} \ C[/tex]
Learn more about electric field here: https://brainly.com/question/14372859