Respuesta :

5. 35 - (-20) = 55

6. [tex]v_{av}=\frac{\Delta s}{\Delta t}=\frac{20-(-20)}{6-0} =\frac{40}{6} =6.67[/tex]

7. D and G

8. A, C, and E

9.

At t = 19,

[tex]s=\frac{s_{final}-s_{initial}}{t_{final}-t_{initial}}(t_1-t_{initial})+s_{initial}=\frac{40-(-20)}{23-18}(19-18)-20=12-20= -8[/tex]

At t = 27,

[tex]s=\frac{s_{final}-s_{initial}}{t_{final}-t_{initial}}(t_1-t_{initial})+s_{initial}=\frac{0-40}{29-26}(27-26)+40=\frac{-40}{3}+40=26.67[/tex]

Therefore, displacement between t = 19 and t = 27 is:

26.67 - (-8) = 34.67

10. [tex]v=\frac{\Delta s}{\Delta t}=\frac{0-40}{29-26}=-13.33[/tex]

11. -20

12. [tex]v=\frac{\Delta s}{\Delta t}=\frac{20-(-20)}{6-0}=\frac{40}{6}=6.67[/tex]