What is the cosine ratio of angle XZW?

[tex]\\ \sf\longmapsto tan60=\dfrac{WZ}{XW}[/tex]
[tex]\\ \sf\longmapsto \sqrt{3}=\dfrac{WZ}{12}[/tex]
[tex]\\ \sf\longmapsto WZ=12√3[/tex]
[tex]\\ \sf\longmapsto WZ=20.78[/tex]
Now
[tex]\\ \sf\longmapsto XZ^2=20.78^2+12^2[/tex]
[tex]\\ \sf\longmapsto XZ^2=431.8+144[/tex]
[tex]\\ \sf\longmapsto XZ^2=575.8[/tex]
[tex]\\ \sf\longmapsto XZ\approx 24[/tex]
Now
[tex]\\ \sf\longmapsto cos\Theta=\dfrac{XW}{XZ}[/tex]
[tex]\\ \sf\longmapsto cos\Theta=\dfrac{12}{24}[/tex]
[tex]\\ \sf\longmapsto cos\Theta=\dfrac{1}{2}[/tex]
Option C
The value of the cosine for the given triangle XZW will be ( 12 / 24 ). the correct option is C.
The trigonometric functions in mathematics are real functions that connect the right-angled triangle's angle to the ratios of its two side lengths. They are extensively utilized in various geosciences, including navigation, and solid mechanics.
Trigonometry is the branch of mathematics that set up a relationship between the sides and angle of the right-angle triangles.
The cosine ratio will be calculated by first calculating the perpendicular WZ.
WZ = 12 x tan60
WZ = 12 x √3
WZ = 12√3
Then calculate the hypotenuse of the triangle.
XZ² = 20.78² + 12²
XZ² = 430+ 144
XZ² = 574
XZ = 24
The cosine ratio will be calculated as:-
cosФ = Base / hypotenuse = 12 / 24.
Therefore, the value of the cosine for the given triangle XZW will be ( 12 / 24 ). the correct option is C.
To know more about Trigonometry follow
https://brainly.com/question/24349828
#SPJ5