Sam completed the square for the quadratic equation y=1/2x^2−2x+3 in order to determine the minimum value of the equation, as shown.

Respuesta :

Answer:

[tex](2,1)[/tex]

Step-by-step explanation:

You can just use the formula [tex]x=-\frac{b}{2a}[/tex]:

[tex]y=ax^2+bx+c[/tex]

[tex]y=\frac{1}{2}x^2-2x+3[/tex]

[tex]x=-\frac{-2}{2(\frac{1}{2})}=\frac{2}{1}=2[/tex]

[tex]y=\frac{1}{2}(2)^2-2(2)+3=\frac{1}{2}(4)-4+3=2-4+3=-2+3=1[/tex]

Therefore, the minimum value of the equation is [tex](2,1)[/tex]