Respuesta :

Answer:

2nd option

Step-by-step explanation:

given a quadratic in standard form

y = ax² + bx + c

• If a > 0 then minimum vertex

• If a < 0 then maximum vertex

Here a = - 1 < 0 then maximum

The maximum value is the value of the y- coordinate of the vertex

The x- coordinate of the vertex is

x = - [tex]\frac{b}{2a}[/tex]

Here a = - 1 and b = 3 , then

x = - [tex]\frac{3}{-2}[/tex] = [tex]\frac{3}{2}[/tex]

Substitute this value into the equation for corresponding y- value

y = - ([tex]\frac{3}{2}[/tex] )² + 3([tex]\frac{3}{2}[/tex] ) - 1 = - [tex]\frac{9}{4}[/tex] + [tex]\frac{9}{2}[/tex] - 1 = - [tex]\frac{9}{4}[/tex] + [tex]\frac{18}{4}[/tex] - [tex]\frac{4}{4}[/tex] = [tex]\frac{5}{4}[/tex]

Then maximum value of [tex]\frac{5}{4}[/tex]