Respuesta :
Answer: Since, m∠2 + m∠1 = 180° [Supplementary angles]
125° + m∠1 = 180°
m∠1 = 180° - 125°
m∠1 = 55°
2). Since ∠7 ≅ ∠12 [alternate interior angles]
m∠7 = m∠12 = 37°
3). m∠3 = m∠18 = 102° [Alternate exterior angles]
4). m∠8 + m∠3 + m∠7 = 180°
m∠8 + 102 + 37 = 180
m∠8 = 41°
5). m∠14 = (m∠7 + m∠8) [Alternate angles]
m∠14 = 37 + 41 = 78°
6). m∠4 = 180° - m∠3 [Linear pairs]
= 180 - 102
= 78°
7). m∠9 = m∠3 = 102° [Vertical angles]
8). m∠15 = m∠2 [Alternate exterior angles]
= 125°
9). m∠5 = m∠15 [Corresponding angles]
= 125°
10). m∠10 + m∠5 = 180° [Sum of interior angles on one side of the transversal]
m∠10 = 180 - 125
= 55°
10). m∠16 = m∠10 = 55° [Vertical angles]
11). m∠6 = m∠10 = 55° [Alternate interior angles]
12). m∠11 = m∠15 = 125°
13). m∠17 = m∠14 = 78° [Vertical angles]
Step-by-step explanation: