Respuesta :

Answer:

134.3

Step-by-step explanation:

In [tex]\triangle{WXZ},[/tex] a right triangle, look at sides XW and XZ.

[tex]\frac{XW}{XZ}=\frac{\text{adjacent}}{\text{hypotenuse}}=\cos{82^\circ}\\\\XW=(XZ)\cos{82^\circ}[/tex]

You now need to find XW.

In [tex]\triangle{XYZ},[/tex] the measure of angle XZY (the one at the top) is 180 - (82 + 67) = 31 degrees.

Using the Law of Sines in triangle XYZ,

[tex]\frac{XZ}{\sin{67^\circ}}=\frac{540}{\sin{31^\circ}}\\\\XZ=\frac{540 \sin{67^\circ}}{\sin{31^\circ}}[/tex]

Put that into the equation for XW above...

[tex]XW=\frac{540\sin{67^\circ}\cos{82^\circ}}{\sin{31^\circ}}[/tex]

A calculator shows that this is approximately 134.3