As the hint suggests, convert to spherical coordinates using
x = p cos(u) sin(v)
y = p sin(u) sin(v)
z = p cos(v)
dV = dx dy dz = p² sin(v) dp du dv
Then U is the set
[tex]U = \left\{ (p,u,v) \mid 0\le p\le2 \text{ and } 0\le u\le \dfrac{\pi}2 \text{ and } 0\le v\le\dfrac{\pi}2\right\}[/tex]
and the integral of y over U is
[tex]\displaystyle \iiint_U y \, dV = \iiint_U p\sin(u)\sin(v) \cdot p^2 \sin(v) \, dV[/tex]
[tex]\displaystyle \iiint_U y \, dV = \int_0^{\frac\pi2} \int_0^{\frac\pi2} \int_0^2 p^3 \sin(u) \sin^2(v) \, dp \, du \, dv [/tex]
[tex] \displaystyle \iiint_U y \, dV = \frac{2^4-0^4}4 \int_0^{\frac\pi2} \int_0^{\frac\pi2} \sin(u) \sin^2(v) \, du \, dv [/tex]
[tex]\displaystyle \iiint_U y \, dV = 4 \cdot \left(-\cos\left(\frac\pi2\right) + \cos(0)\right) \int_0^{\frac\pi2} \sin^2(v) \, dv [/tex]
[tex]\displaystyle \iiint_U y \, dV = 4 \cdot \frac12 \int_0^{\frac\pi2} (1-\cos(2v)) \, dv [/tex]
[tex]\displaystyle \iiint_U y \, dV = 2 \left(\left(\frac\pi2 - \frac12 \sin\left(2\cdot\frac\pi2\right)\right) - \left(0 - \frac12 \sin\left(2\cdot0\right)\right) \right)[/tex]
[tex]\displaystyle \iiint_U y \, dV = \pi - \sin(\pi) = \boxed{\pi}[/tex]