The running distance is 4.23 miles, the swimming distance is 1.98 miles and the cycling distance is 35.64 miles.
Each racer travels the same distance and the sum of the distances travelled ([tex]x[/tex]), in miles. By definition of average speed ([tex]v[/tex]), in miles per hour, we get the following system of equations:
Amanda
[tex]t_{A} = \frac{x_{R}}{v_{A, R}}+\frac{x_{S}}{v_{A,S}}+\frac{x_{C}}{v_{A,C}}[/tex] (1)
Where:
- [tex]x_{R}[/tex] - Running distance, in miles.
- [tex]x_{S}[/tex] - Swimming distance, in miles.
- [tex]x_{C}[/tex] - Cycling distance, in miles.
- [tex]v_{A,R}[/tex] - Speed of Amanda in the running distance, in miles per hour.
- [tex]v_{A,S}[/tex] - Speed of Amanda in the swimming distance, in miles per hour.
- [tex]v_{A,C}[/tex] - Speed of Amanda in the cycling distance, in miles per hour.
- [tex]t_{A}[/tex] - Total time of Amanda, in hours.
Bryce
[tex]t_{B} = \frac{x_{R}}{v_{B, R}}+\frac{x_{S}}{v_{B,S}}+\frac{x_{C}}{v_{B,C}}[/tex] (2)
Where:
- [tex]v_{B,R}[/tex] - Speed of Bryce in the running distance, in miles per hour.
- [tex]v_{B,S}[/tex] - Speed of Bryce in the swimming distance, in miles per hour.
- [tex]v_{B,C}[/tex] - Speed of Bryce in the cycling distance, in miles per hour.
- [tex]t_{B}[/tex] - Total time of Bryce, in hours.
Corey
[tex]t_{C} = \frac{x_{R}}{v_{C, R}}+\frac{x_{S}}{v_{C,S}}+\frac{x_{C}}{v_{C,C}}[/tex] (3)
Where:
- [tex]v_{B,R}[/tex] - Speed of Corey in the running distance, in miles per hour.
- [tex]v_{B,S}[/tex] - Speed of Corey in the swimming distance, in miles per hour.
- [tex]v_{B,C}[/tex] - Speed of Corey in the cycling distance, in miles per hour.
- [tex]t_{B}[/tex] - Total time of Corey, in hours.
If we know that [tex]t_{A} = 2.7\,h[/tex], [tex]v_{A,R} = 10\,\frac{mi}{h}[/tex], [tex]v_{A,S} = 4\,\frac{mi}{h}[/tex], [tex]v_{A, C} = 20\,\frac{mi}{h}[/tex], [tex]t_{B} = 3.27\,h[/tex], [tex]v_{B,R} = 7.5\,\frac{mi}{h}[/tex], [tex]v_{B,S} = 6\,\frac{mi}{h}[/tex], [tex]v_{B,C} = 15\,\frac{mi}{h}[/tex], [tex]t_{C} = 1.833\,h[/tex], [tex]v_{C,R} = 15\,\frac{mi}{h}[/tex], [tex]v_{C,S} = 3\,\frac{mi}{h}[/tex] and [tex]v_{C,C} = 40\,\frac{mi}{h}[/tex], then the solution of the linear system of equations is:
[tex]\frac{x_{R}}{10} + \frac{x_{S}}{4} + \frac{x_{C}}{20} = 2.7[/tex] (4)
[tex]\frac{x_{B}}{7.5}+\frac{x_{S}}{6} +\frac{x_{C}}{15} = 3.27[/tex] (5)
[tex]\frac{x_{R}}{15}+\frac{x_{S}}{3} +\frac{x_{C}}{40} = 1.833[/tex] (6)
[tex]x_{R} = 4.23\,mi[/tex], [tex]x_{S} = 1.98\,mi[/tex], [tex]x_{C} = 35.64\,mi[/tex]
The running distance is 4.23 miles, the swimming distance is 1.98 miles and the cycling distance is 35.64 miles.
We kindly invite to check this question on systems of linear equations: https://brainly.com/question/20379472