PLS HELP :-)
Wayne is buying a house for $205,000. He is financing $175,000 and obtained a 30-year, fixed-rate mortgage with a 6.425% interest rate. How much are his monthly payments?

$1,285.64

$936.48

$1,097.50

$1,517.23

Respuesta :

Option b is the answer to your question

Answer:

Option C - $1,097.50            

Step-by-step explanation:

Given : $175,000 financing and obtained a 30-year, fixed-rate mortgage with a 6.425% interest rate.

To find : The monthly payments

Solution : To find monthly payments the formula is  

Monthly payment = Amount / Discount factor  

Discount factor [tex]D=\frac{1-(1+i)^{-n}}{i}[/tex]

Where, Amount(A)=$175,000 , Rate(r)= 6.425%=0.06425, Time = 30 year

[tex]i=\frac{0.06425}{12}=0.00535416666667[/tex]

Time(in months) n=30 × 12= 360

Put value in D we get,

[tex]D=\frac{1-(1+i)^{-n}}{i}[/tex]


[tex]D=\frac{1-(1+0.00535416666667)^{-360}}{0.00535416666667}[/tex]


[tex]D=\frac{1-(1.00535416666667)^{-360}}{0.00535416666667}[/tex]


[tex]D=\frac{1-0.146261631144}{0.00535416666667}[/tex]


[tex]D=\frac{0.853738368856}{0.00535416666667}[/tex]


[tex]D=159.453080564[/tex]  

Monthly payment   [tex]M=\frac{A}{D}[/tex]


 [tex]M=\frac{175,000}{159.453080564}[/tex]

 [tex]M=1097.50153074[/tex]

Approx. monthly payment = $1097.50

Therefore, Option C is correct - $1097.50