Respuesta :
Explanation :-
- At first, we have to multiply the numerator and the denominator and the denominator's inverse such that (a-b)(a+b) = a² - b² is formed in the denominator.
- Denominator = 5-2√3
- Rationalizing factor = 5 + 2√3
[tex]\qquad[/tex]_________________________
[tex]\bf Multiplying\:by\:\: \purple{ \dfrac{5+\sqrt{3}}{5+\sqrt{3}}}\\[/tex]
[tex]\qquad[/tex][tex] \longrightarrow \bf \dfrac{1}{5 - 2\sqrt{3} } \times \dfrac{5 + 2\sqrt{3} }{5 + 2\sqrt{3} }\\ [/tex]
[tex]\qquad[/tex][tex]\longrightarrow \sf \dfrac{1(5 + 2\sqrt{3}) }{(5 - 2\sqrt{3})(5 + 2\sqrt{3}) } [/tex]
[tex]\qquad[/tex][tex]\longrightarrow \sf \dfrac{5 + 2\sqrt{3} }{ {(5)}^{2} - (2 \sqrt{3})^{2} } [/tex]
[tex]\qquad[/tex][tex] \longrightarrow \sf \dfrac{5 + 2 \sqrt{3} }{(5 \times 5) - (2 \times 2 \times \sqrt{3} \times \sqrt{3} )} [/tex]
[tex]\qquad[/tex][tex] \longrightarrow \sf \dfrac{5 + 2 \sqrt{3} }{(25) - (12)} [/tex]
[tex]\qquad[/tex][tex] \purple{ \longrightarrow \bf \dfrac{5 + 2 \sqrt{3} }{13} } [/tex]
[tex]\qquad[/tex]_________________________