Respuesta :

Using sine rule and cosine rule, the angles from smallest to largest is A,B,C.

Using the cosine rule;

a^2 = b^2 + c^2 - 2bc cos A

When;

a = 9 cm

b = 16 cm

c = 18 cm

9^2 = 16^2 + 18^2 - (2 × 16 × 18) cos A

81 = 256 + 324 - (576) cos A

81 = 580 - 576 cos A

81 - 580 = - 576 cos A

cos A = (81 - 580)/  - 576

A = cos-1[(81 - 580)/  - 576]

A = 30°

Using the sine rule;

a/sin A = b/sinB

asinB = bsinA

sinB = bsinA/a

B = sin-1(bsinA/a)

B = sin-1[(16 × sin30)/9]

B = 63°

Now;

A + B + C = 180(Sum of angles in a triangle)

C = 180 - ( A + B)

C = 180 - ( 30 + 63)

C = 87°

The angles are A, B, C.

Learn more about cosine rule: https://brainly.com/question/3240813