Answer:
Below.
Step-by-step explanation:
p(x) = x^4 - 13x^2 – 25x – 12
Long division:
x^2 - 4)x^4 - 13x^2 – 25x – 12( x^2 - 9 <-------- Quotient
x^4 - 4x^2
Subtract: -9x^2 - 25x
-9x^2 + 36
-25x - 36 - 12
So the remainder is -25x - 48 (Answer).
B) If the above are correct then:
(x^2 - 4) * quotient + remainder = the original form of p(x).
(x^2 - 4)(x^2 -9) - 25x - 48 = the original p(x).
p(x) = x^4 - 9x^2 - 4x^2 + 36 - 25x - 48
= x^4 - 13x^2 - 25x -12 = original p(x)