Which function represents the following graph? On a coordinate plane, a cubic function has an inflection point at (negative 3, 3) and crosses the x-axis at (0, 4. 5). Y = StartRoot x minus 3 EndRoot 3 y = StartRoot x 3 EndRoot 3 y = RootIndex 3 StartRoot x minus 3 EndRoot 3 y = RootIndex 3 StartRoot x 3 EndRoot 3.

Respuesta :

The function represents the graph is (d) [tex]y = \sqrt[3]{x+3} + 3[/tex]

The points on the graph are given as:

[tex](x,y) = (-3,3)[/tex] --- the inflection point

[tex](x,y) = (0,4.5)[/tex] --- the y-intercept

The function that satisfy the above points is:

[tex]y = \sqrt[3]{x+3} + 3[/tex]

The proof is as follows:

At the inflection point, we have the x value to be -3.

So, the function becomes

[tex]y = \sqrt[3]{x+3} + 3[/tex]

[tex]y = \sqrt[3]{-3+3} + 3[/tex]

[tex]y = \sqrt[3]{0} + 3[/tex]

[tex]y = 0+ 3[/tex]

[tex]y = 3[/tex] ---- the y-value at the inflection point is true for x = -3

Also, at the y-intercept, we have the x-value to be 0

So, the function becomes

[tex]y = \sqrt[3]{x+3} + 3[/tex]

[tex]y = \sqrt[3]{0+3} + 3[/tex]

[tex]y = \sqrt[3]{3} + 3[/tex]

[tex]y = 1.45+ 3[/tex]

[tex]y = 4.45[/tex] ---- the y-value at the y-intercept is true for x = 0

Hence, the function represents the graph is (d) [tex]y = \sqrt[3]{x+3} + 3[/tex]

Read more about graphs and functions at:

https://brainly.com/question/25918641

Answer:

D

Step-by-step explanation: