Respuesta :
The function represents the graph is (d) [tex]y = \sqrt[3]{x+3} + 3[/tex]
The points on the graph are given as:
[tex](x,y) = (-3,3)[/tex] --- the inflection point
[tex](x,y) = (0,4.5)[/tex] --- the y-intercept
The function that satisfy the above points is:
[tex]y = \sqrt[3]{x+3} + 3[/tex]
The proof is as follows:
At the inflection point, we have the x value to be -3.
So, the function becomes
[tex]y = \sqrt[3]{x+3} + 3[/tex]
[tex]y = \sqrt[3]{-3+3} + 3[/tex]
[tex]y = \sqrt[3]{0} + 3[/tex]
[tex]y = 0+ 3[/tex]
[tex]y = 3[/tex] ---- the y-value at the inflection point is true for x = -3
Also, at the y-intercept, we have the x-value to be 0
So, the function becomes
[tex]y = \sqrt[3]{x+3} + 3[/tex]
[tex]y = \sqrt[3]{0+3} + 3[/tex]
[tex]y = \sqrt[3]{3} + 3[/tex]
[tex]y = 1.45+ 3[/tex]
[tex]y = 4.45[/tex] ---- the y-value at the y-intercept is true for x = 0
Hence, the function represents the graph is (d) [tex]y = \sqrt[3]{x+3} + 3[/tex]
Read more about graphs and functions at:
https://brainly.com/question/25918641