Respuesta :
The given ratio of the volumes indicates that the volume of the cylinder is 9 times the volume of the cone.
- The height of the cylinder is 12 cm
Reasons:
The given parameter are;
Ratio of the volume of the cone to the cylinder to the 1 : 9
The height and diameter of the cone are; 16 cm and 14 cm
The diameter of the cylinder = 28 cm
Required:
To find the height of the cone:
Solution:
[tex]\displaystyle The \ volume \ of \ a\ cone = \frac{1}{3} \cdot \pi \cdot r^2 \cdot h[/tex]
[tex]\displaystyle The \ volume \ of \ the \ cone = \frac{1}{3} \times \pi \times \left(\frac{14}{2} \right)^2 \times 16 = \mathbf{ \frac{784}{3} \cdot \pi}[/tex]
Volume of a cylinder, V = π·r²·h
[tex]\displaystyle Radius \ of \ the \ cylinder = \frac{28 \, cm}{2} = 14 \, cm[/tex]
Volume of the cylinder, V = π × 14² × h = 2,352·π
The volume of the cylinder = 9 × The volume of the cone
Therefore;
[tex]\displaystyle Volume \ of \ the \ cylinder =9 \times \frac{784}{3} \cdot \pi = \mathbf{2,352 \cdot \pi}[/tex]
[tex]\displaystyle Height \ of \ the \ cylinder, \, h = \mathbf{\frac{2,352 \cdot \pi}{14^2 \cdot \pi}} = 12[/tex]
The height of the cylinder, h = 12 cm
Learn more about ratios here:
https://brainly.com/question/4713715