Respuesta :
Answer:
[tex] x = \frac{21 - 3y - 3z}{4} [/tex]
Step-by-step explanation:
Question:-
- To find value of x
Equation:-
- x + 3x + 3y + 3z = 21
Solution:-
=> x + 3x + 3y + 3z = 21
- [On adding like terms x and 3x]
=> 4x + 3y + 3z = 21
- [On subtracting both sides with 3y]
=> 4x + 3y + 3z - 3y = 21 - 3y
- [On Simplification]
=> 4x + 3z = 21 - 3y
- [On subtracting both sides with 3z]
=> 4x + 3z - 3z = 21 - 3y - 3z
- [On Simplification]
=> 4x = 21 - 3y - 3z
- [On dividing both sides with 4]
[tex] = > \frac{4x}{4} = \frac{21 - 3y - 3z}{4} [/tex]
- [On Simplification]
[tex] = > x = \frac{21 - 3y - 3z}{4} (ans)[/tex]
Given :
- x + 3x + 3y + 3z = 21
To Find :
- The value of x
Solution :
[tex]\qquad { \dashrightarrow \: { \sf{x + 3x + 3y + 3z = 21}}}[/tex]
Adding the like terms :
[tex]\qquad { \dashrightarrow \: { \sf{4x + 3y + 3z = 21}}}[/tex]
Transposing 3y to the other side which then becomes negative :
[tex]\qquad { \dashrightarrow \: { \sf{4x + 3z = 21 - 3y}}}[/tex]
Now, Transposing 3z to the other side which then becomes negative :
[tex]\qquad { \dashrightarrow \: { \sf{4x = 21 - 3y - 3z}}}[/tex]
Dividing both sides by 4 :
[tex]\qquad { \dashrightarrow \: { \sf{ \dfrac{4x}{4} = \dfrac{21 - 3y - 3z}{4} }}}[/tex]
[tex]\qquad { \dashrightarrow \: { \sf{{x} = \dfrac{21 - 3y - 3z}{4} }}}[/tex]
Therefore, the value of x = 21 – 3y – 3z/4