Respuesta :

Answer:

[tex] x = \frac{21 - 3y - 3z}{4} [/tex]

Step-by-step explanation:

Question:-

  • To find value of x

Equation:-

  • x + 3x + 3y + 3z = 21

Solution:-

=> x + 3x + 3y + 3z = 21

  • [On adding like terms x and 3x]

=> 4x + 3y + 3z = 21

  • [On subtracting both sides with 3y]

=> 4x + 3y + 3z - 3y = 21 - 3y

  • [On Simplification]

=> 4x + 3z = 21 - 3y

  • [On subtracting both sides with 3z]

=> 4x + 3z - 3z = 21 - 3y - 3z

  • [On Simplification]

=> 4x = 21 - 3y - 3z

  • [On dividing both sides with 4]

[tex] = > \frac{4x}{4} = \frac{21 - 3y - 3z}{4} [/tex]

  • [On Simplification]

[tex] = > x = \frac{21 - 3y - 3z}{4} (ans)[/tex]

Given :

  • x + 3x + 3y + 3z = 21

To Find :

  • The value of x

Solution :

[tex]\qquad { \dashrightarrow \: { \sf{x + 3x + 3y + 3z = 21}}}[/tex]

Adding the like terms :

[tex]\qquad { \dashrightarrow \: { \sf{4x + 3y + 3z = 21}}}[/tex]

Transposing 3y to the other side which then becomes negative :

[tex]\qquad { \dashrightarrow \: { \sf{4x + 3z = 21 - 3y}}}[/tex]

Now, Transposing 3z to the other side which then becomes negative :

[tex]\qquad { \dashrightarrow \: { \sf{4x = 21 - 3y - 3z}}}[/tex]

Dividing both sides by 4 :

[tex]\qquad { \dashrightarrow \: { \sf{ \dfrac{4x}{4} = \dfrac{21 - 3y - 3z}{4} }}}[/tex]

[tex]\qquad { \dashrightarrow \: { \sf{{x} = \dfrac{21 - 3y - 3z}{4} }}}[/tex]

Therefore, the value of x = 21 – 3y – 3z/4