Respuesta :

The value of the variable x can be determined using the circle theorem to

determine the angle formed by x.

The correct responses are;

  • (1) x = 30°
  • (2) x = 100°
  • (3) x = 60°

Reasons:

(1) From circle theorem, we have;

  • Equal chords subtends equal arcs and vice versa
  • Equal chords subtend equal angles at the center of a circle

Therefore;

Angle subtended by [tex]\displaystyle \widehat {AB}[/tex] at center = Angle subtended by [tex]\widehat {BC}[/tex] at the center;

  • Angle at the center = 2 × Angle at the circumference

Therefore;

Angle subtended by [tex]\displaystyle \widehat {AB}[/tex] at the circumference = Angle subtended by [tex]\mathbf{\widehat {BC}}[/tex] at the circumference

Which gives;

  • x = 30°

(2) [tex]\displaystyle \widehat {AB} = \mathbf{\widehat {CD}}[/tex] given

Angle subtended by arc [tex]\widehat {CD}[/tex] at the center = x

Equal arcs subtend equal angles at the center of a circle.

Therefore;

Angle subtended by arc [tex]\mathbf{\widehat {AB}}[/tex] at the center = x

Angle at center = 2 × angle at circumference

Therefore;

x = 2 × 50° = 100°

x = 100°

(3) [tex]\displaystyle \widehat {AC} = \mathbf{ 3 \times \widehat {AB}}[/tex] given

By definition, we have;

Angle subtended by [tex]\widehat {AC}[/tex] at the center = 3 × Angle subtended by [tex]\widehat {AB}[/tex] at the center

According to circle theorem, we have;

Angle at the center = 2 × Angle at the circumference

Let y represent the angle subtended at the circumference by [tex]\widehat {AB}[/tex], we have;

y = 20°

[tex]\widehat {AB}[/tex] = 2·y

[tex]\widehat {AC}[/tex] = 3 × [tex]\widehat {AB}[/tex] = 3 × 2·y = 6·y

Therefore;

[tex]\widehat {AC}[/tex] = 6 × 20° = 120°

[tex]\widehat {AC}[/tex] = 120°

[tex]\widehat {AC}[/tex] = 2·x

Therefore;

2·x = 120°

[tex]\displaystyle x = \frac{120^{\circ}}{2} = \mathbf{ 60^{\circ}}[/tex]

x = 60°

Learn more circle theorems here:

https://brainly.com/question/16879446