Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the sine/ cosine ratios in the right triangle and the exact values

sin30° = [tex]\frac{1}{2}[/tex] , cos30° = [tex]\frac{\sqrt{3} }{2}[/tex] , then

sin30° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{BC}{AB}[/tex] = [tex]\frac{6}{AB}[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )

AB = 12

cos30° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{AC}{AB}[/tex] = [tex]\frac{AC}{12}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

2 AC = 12[tex]\sqrt{3}[/tex] ( divide both sides by 2 )

AC = 6[tex]\sqrt{3}[/tex]