Explanation:
A. The centripetal force experienced by an electron as it goes around a hydrogen nucleus is given by
[tex]F_c = m_e\dfrac{v^2}{r}[/tex]
where [tex]m_e = \text{electron\:mass} = 9.11×10^{-31}\:\text{kg}[/tex]
[tex]r = 5.17×10^{-11}\:\text{m}[/tex] = orbital radius
[tex]v = 2.16×10^6\;\text{m/s}[/tex] = orbital velocity
so the centripetal force is
[tex]F_c = (9.11×10^{-31}\:\text{kg})\dfrac{(2.16×10^6\;\text{m/s})^2}{5.17×10^{-11}\:\text{m}}[/tex]
[tex]\;\;\;=8.22×10^{-8}\:\text{N}[/tex]
B. The electron's centripetal acceleration is given by
[tex]a_c = \dfrac{v^2}{r}[/tex]
Using the values from (A), we get
[tex]a_c = \dfrac{(2.16×10^6\;\text{m/s})^2}{5.17×10^{-11}\:\text{m}}[/tex]
[tex]\;\;\;=9.02×10^{22}\:\text{m/s}^2[/tex]