Respuesta :

[tex]\huge \bf༆ Answer ༄[/tex]

Let the capacity of bus be x students

And van be y students, now ;

From the given statements we get two equations ~

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:2x + 10y = 260 \: \: \: \: \: (1)[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:13x + 5y = 670 \: \: \: \: \: (2)[/tex]

multiply the equation (2) with 2 [ it won't change the values ]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:2x + 10y = 260 \: \: \: \: \: \: \: \: \: (1)[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:26x + 10y = 1340 \: \: \: \: \: (3)[/tex]

Now, deduct equation (1) from equation (3)

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:26x + 10y - 2x - 10y = 1340 - 260[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:24x = 1080[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:x = 1080 \div 24[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:x = 45[/tex]

Therefore each bus can carry (x) = 45 students

Now, plug the value of x in equation (1) to find y ~

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:2x + 10y = 260[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:(2 \times 45) + 10y = 260[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:90 + 10y = 260[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:10y = 260 - 90[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:10y = 170[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:y = 170 \div 10[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:y = 17[/tex]

Hence, each van can carry (y) = 17 students in total.