Answer:
The volume of cone is [tex]\boxed{\tt{167.47}}[/tex] unit³.
Step-by-step explanation:
Solution :
As per given question we have provided :
- ➝ Radius of cone = 4 units
- ➝ Height of cone = 10 units
Here's the required formula to find the volume of cone :
[tex]{\longrightarrow{\pmb{\sf{V_{(Cone)} = \dfrac{1}{3}\pi{r}^{2}h}}}}[/tex]
- V = Volume
- π = 3.14
- r = radius
- h = height
Substituting all the given values in the formula to find the volume of cone :
[tex]{\longrightarrow{\sf{Volume_{(Cone)} = \dfrac{1}{3}\pi{r}^{2}h}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14{(4)}^{2}10}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14{(4 \times 4)}10}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14{(16)}10}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14 \times 16 \times 10}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cone)} = \dfrac{1}{3} \times 3.14 \times 160}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cone)} = \dfrac{1\times 3.14 \times 160}{3}}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cone)} = \dfrac{3.14 \times 160}{3}}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cone)} = \dfrac{502.4}{3}}}}[/tex]
[tex]{\longrightarrow{\sf{Volume_{(Cone)} \approx 167.47}}}[/tex]
[tex]\star{\underline{\boxed{\sf{\purple{Volume_{(Cone)} \approx 167.47\: {unit}^{3}}}}}}[/tex]
Hence, the volume of cone is 167.47 unit³.
[tex]\rule{300}{2.5}[/tex]