Respuesta :

1500 of the such cuboids are needed to form a cube

Dimensions

The dimensions of the plasticine are given as:

  • Length = 25 cm
  • Width = 15 cm
  • Height = 6 cm

Lowest Common Multiple

Start by calculating the LCM of the dimensions

[tex]25 = 5 \times 5[/tex]

[tex]15 = 3 \times 5[/tex]

[tex]6 = 2 \times 3[/tex]

So, we have:

[tex]LCM =2 \times 3 \times 5 \times 5[/tex]

[tex]LCM =150[/tex]

So, the number of cuboids needed is:

[tex]n = \frac{LCM}{Length} \times \frac{LCM}{Width} \times \frac{LCM}{Height}[/tex]

This gives

[tex]n = \frac{150}{25} \times \frac{150}{15} \times \frac{150}{6}[/tex]

[tex]n = 6 \times 10 \times 25[/tex]

[tex]n = 1500[/tex]

Hence, 1500 of the such cuboids are needed to form a cube

Read more about cubes and cuboids at:

https://brainly.com/question/1972490