Respuesta :
[tex]\\ \sf\longmapsto 2^x=5(3^{x+3}[/tex]
[tex]\\ \sf\longmapsto 2^x=5(3^x3^3)[/tex]
[tex]\\ \sf\longmapsto \dfrac{2^x}{3^x}=5(27)=135[/tex]
[tex]\\ \sf\longmapsto (\dfrac{2}{3})^x=135[/tex]
[tex]\\ \sf\longmapsto 0.6^x=135[/tex]
- x[tex]\not{\in}[/tex]Z
The value of x in the expression is –12.1
Data obtained from the question
- 2^x = 5 × 3^(x+3)
- Value of x =?
How to determine the value of x
2^x = 5 × 3^(x+3)
Recall
M^(a+c) = M^a × M^c
Thus,
3^(x+3) = 3^x × 3^3
Therefore,
2^x = 5 × 3^(x+3)
2^x = 5 × 3^x × 3^3
2^x = 5 × 3^x × 27
2^x = 3^x × 135
Divide both side by 3^x
(2/3)^x = 135
Take the log of both side
Log (2/3)^x = Log 135
xLog (2/3) = Log 135
Divide both side by Log (2/3)
x = Log 135 / Log (2/3)
x = –12.1
Learn more about algebra:
https://brainly.com/question/20269709