Respuesta :

The expression as a perfect square trinomial is [tex]\rm x^2+4x+4\\[/tex].

The expression as a perfect square trinomial is [tex]\rm x^2-20x+100\\[/tex]

The expression as a perfect square trinomial is [tex]\rm x^2+4x+\dfrac{25}{4}\\[/tex].

Given that

The given equations are as follows;

[tex]\rm x^2 + 2x + \\\\ x^2 -20x +\\\\ x^2 + 5x +\\\\[/tex]

We have to determine

What values are needed to make each expression a perfect square trinomial?

According to the question

To know more about the values are needed to make a perfect square trinomial following all the steps given below.

A perfect square trinomial is equal to;

[tex]\rm (x+a)^2 = x^2+a^2+2ax[/tex]

1. The given equation is,

[tex]\rm x^2 + 2x +[/tex]

Then,

Compare with the formula of a perfect square trinomial.

[tex]\rm x^2+2ax+a^2= x^2+4x\\ \\ 4x=2ax\\ \\ a = \dfrac{4x}{2x}\\ \\ a=2[/tex]

Substitute the value of a

[tex]\rm x^2+2ax+a^2= x^2+4x+(2)^2\\ \\ x^2+2ax+a^2= x^2+4x+4\\[/tex]

The expression as a perfect square trinomial is [tex]\rm x^2+4x+4\\[/tex].

2. The given equation is,

[tex]\rm x^2 - 20x +[/tex]

Then,

Compare with the formula of a perfect square trinomial.

[tex]\rm x^2+2ax+a^2= x^2-20x\\ \\ -20x=2ax\\ \\ a = \dfrac{-20x}{2x}\\ \\ a=-10[/tex]

Substitute the value of a

[tex]\rm x^2+2ax+a^2= x^2 -20x+(-10)^2\\ \\ x^2+2ax+a^2= x^2-20x+100\\[/tex]

The expression as a perfect square trinomial is [tex]\rm x^2-20x+100\\[/tex].

3. The given equation is,

[tex]\rm x^2 + 5x +[/tex]

Then,

Compare with the formula of a perfect square trinomial.

[tex]\rm x^2+2ax+a^2= x^2+5x\\ \\ 5x=2ax\\ \\ a = \dfrac{5x}{2x}\\ \\ a=\dfrac{5}{2}[/tex]

Substitute the value of a

[tex]\rm x^2+2ax+a^2= x^2+4x+(\dfrac{5}{2})^2\\ \\ x^2+2ax+a^2= x^2+4x+\dfrac{25}{4}\\[/tex]

The expression as a perfect square trinomial is [tex]\rm x^2+4x+\dfrac{25}{4}\\[/tex].

To know more about Trinomial Click the link given below.

https://brainly.com/question/1224704

Answer:

2022

Step-by-step explanation:

1

100

25/4

on edge