1) let P represent Price, and since the dependency is linear, the supply equation will take the following form:
A) Y- [tex]Y_{1\\} [/tex] = [tex](\frac{Y_{1} -Y_{2} }{P_{1} -P_{2} } ) (P_{1} -P_{2} )[/tex]
⇒ Y - 1,000 = [tex](\frac{-250}{-100} ) (P-690)[/tex]
⇒ Y - 1,000 = [tex]\frac{5}{2} (P-690) = (\frac{5}{2})P - 345 [/tex]
⇒ Y = [tex](\frac{5}{2})P + 1,000- 345 [/tex]
⇒ Y = [tex](\frac{5}{2})P + 655[/tex], therefore,
P = [tex](\frac{2}{5}) (Y-655) [/tex]
B) When Y = 1,130, the price would be:
⇒P = [tex]\frac{2}{5} (1,130 - 655) [/tex]
⇒ P = [tex]\frac{2}{5} (485) [/tex]
Therefore:
P = $194
See the link below for more supply related questions:
https://brainly.com/question/2822773