Respuesta :

[tex]\huge \bf༆ Answer ༄[/tex]

Let's solve ~

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:x + y = 15 \: \: \: \: \: (1)[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:x - y = 3 \: \: \: \: \: (2)[/tex]

From adding both equations, we get ~

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:x + y + x - y = 15 + 3[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:2x = 18[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:x = 18 \div 2[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:x = 9[/tex]

Now, plug the value of x in equation 1 to find the value of y ;

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:x + y = 15[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:9 + y = 15[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:y = 15 - 9[/tex]

[tex]{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:y = 6[/tex]

The value of y and x in the equation is 6 and 9 respectively

How to solve simultaneous equation

Given:

x + y = 15

x - y = 3

  • Add both equations to eliminate y

x + x = 15 + 3

2x = 18

x = 18/2

x = 9

  • substitute x = 9 into

x - y = 3

9 - y = 3

- y = 3 - 9

-y = -6

y = 6

Learn more about simultaneous equation:

https://brainly.com/question/16863577