20 points help asap
A dugout needs to reach at least 54 feet below ground level. This means it needs to be more than 2 1/4 times its current depth. This depth is represented by the inequality 2 1/4d<−54, where d is the current depth of the dugout.

Select from the drop-down to correctly interpret the solution of this inequality.

The current depth of the dugout is

at most 24
deeper than 24
less than 24

feet below ground level.

Respuesta :

Solving the inequality, it is found that:
The current depth of the dugout is of 0.25 feet below ground level.
The current depth of the dugout is of d.
The inequality below represents how much the dugout needs to reach, according to the current depth:

We solve it similarly to an equality, hence:


The current depth of the dugout is of 0.25 feet below ground level.