Respuesta :

Answer is 3t²-6t

Step-by-step Explanation:-

[tex]s(t) = {t}^{3} - 3 {t}^{2} + 8[/tex]

Now we need to find velocity. The velocity is the first derivative of position, so let's find the derivative of s(t) :-

[tex]s'(t) = v(t) = 3 {t}^{3 - 1} - 3 \times 2 {t}^{2 - 1} [/tex]

So,

[tex]v(t) = 3 {t}^{2} - 6t[/tex]

Therefore, v(t) = 3t²-6t