Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the tangent ratio in the right triangle

tan A = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{BC}{AC}[/tex] = [tex]\frac{7}{8}[/tex] , then

∠ A = [tex]tan^{-1}[/tex] ([tex]\frac{7}{8}[/tex] ) ≈ 41° ( to the nearest degree )

The sum of the angles in the triangle = 180° , then

∠ B + 41° + 90° = 180°

∠ B + 131° = 180° ( subtract 131° from both sides )

∠ B = 49°

Using Pythagoras' identity in the right triangle

AB² = BC² + AC² = 7² + 8² = 49 + 64 = 113 ( take square root of both sides )

AB = [tex]\sqrt{113}[/tex] ≈ 10.6 ( to the nearest tenth )