The value of p(1), p(-2), and p(8) is 0, 744 and 0 respectively
Given the function [tex] p(x)= 192 + 21x^3 + 54x^2 - 3x^4 - 264x[/tex]
We are to get the following parameters:
[tex] p(1)= 192 + 21(1)^3 + 54(1)^2 - 3(1)^4 - 264(1)\\
p(1)=192+21+54-3-264\\
p(1)=0[/tex]
For p(-2)
[tex] p(-2)= 192 + 21(-2)^3 + 54(-2)^2 - 3(-2)^4 - 264(-2)\\
p(-2)=192-168+216-24+528\\
p(-2)=744[/tex]
For p(8)
[tex] p(8)=192 + 21(8)^3 + 54(8)^2 - 3(8)^4 - 264(8)\\p(8)=192+10,752+3,456-12,288-2,112\\p(-2)=0[/tex]
Hence the value of p(1), p(-2), and p(8) is 0, 744 and 0 respectively
Learn more on polynomials here: https://brainly.com/question/4142886