Respuesta :

Answer:

   h=14.9966

Step-by-step explanation:

1. The formula of the volume is:

        V=[tex]\frac{ab(h)}{3}[/tex]

2. So you have to substitute the the data that you have:

       3533.5[tex]in^{3}[/tex]=[tex]\frac{ab(h)}{3}[/tex]

3. To have the area of the base (ab) you have to get the formula of the circle's area and solve:

       A=[tex]\pi[/tex]([tex]r^{2}[/tex])

       A=[tex]\pi[/tex]([tex]15^{2}[/tex])

       A=3.1416(225)

       A=706.86in

4. Now you have the area of the base:

        3533.5[tex]in^{3}[/tex]=[tex]\frac{706.86(h)}{3}[/tex]

5. In this step you are going to clear the variable which is the heigh (h) and solve as an equation:

         3533.5[tex]in^{3}[/tex]=[tex]\frac{706.86(h)}{3}[/tex]

     3533.5[tex]in^{3}[/tex](3)=706.86(h)

               [tex]\frac{10,600.5}{706.86}[/tex]=h

                       h=14.9966

The result may vary depending on the value of [tex]\pi[/tex] that you use,

Answer:

  • 15 in

Step-by-step explanation:

Volume of the cone:

  • V = 1/3πr²h

Given:

  • V = 3533.5 in³
  • r = 15 in

Find the value of h:

  • h = 3V/(πr²)

Substitute the values and calculate:

  • h = 3*3533.5/(3.14*15²)
  • h = 15 in