Respuesta :
Answer:
h=14.9966
Step-by-step explanation:
1. The formula of the volume is:
V=[tex]\frac{ab(h)}{3}[/tex]
2. So you have to substitute the the data that you have:
3533.5[tex]in^{3}[/tex]=[tex]\frac{ab(h)}{3}[/tex]
3. To have the area of the base (ab) you have to get the formula of the circle's area and solve:
A=[tex]\pi[/tex]([tex]r^{2}[/tex])
A=[tex]\pi[/tex]([tex]15^{2}[/tex])
A=3.1416(225)
A=706.86in
4. Now you have the area of the base:
3533.5[tex]in^{3}[/tex]=[tex]\frac{706.86(h)}{3}[/tex]
5. In this step you are going to clear the variable which is the heigh (h) and solve as an equation:
3533.5[tex]in^{3}[/tex]=[tex]\frac{706.86(h)}{3}[/tex]
3533.5[tex]in^{3}[/tex](3)=706.86(h)
[tex]\frac{10,600.5}{706.86}[/tex]=h
h=14.9966
The result may vary depending on the value of [tex]\pi[/tex] that you use,
Answer:
- 15 in
Step-by-step explanation:
Volume of the cone:
- V = 1/3πr²h
Given:
- V = 3533.5 in³
- r = 15 in
Find the value of h:
- h = 3V/(πr²)
Substitute the values and calculate:
- h = 3*3533.5/(3.14*15²)
- h = 15 in