Respuesta :

Answer:

  • The sum of the first 30 terms of this arithmetic sequence is 209. Hoped this helped.

Step-by-step explanation:

We know that:

  • Formula = 6 + (7x)

Work:

  • => 6 + (7x)
  • => 6 + {7(29)}
  • => 6 + 203
  • => 209

Hence, the sum of the first 30 terms of this arithmetic sequence is 209. Hoped this helped.

[tex]BrainiacUser1357[/tex]

Answer:

The sum of first 30 terms of arithmetic sequence is 3225.

Step-by-step explanation:

Here's the required formula to find the sum of the arithmetic sequence :

[tex] \star{\underline{\boxed{\sf{S_n = \dfrac{n}{2}\Big[2a + (n - 1)d\Big]}}}}[/tex]

  • [tex]\pink\star[/tex] Sₙ = number of terms of AP
  • [tex]\pink\star[/tex] n = n terms of AP
  • [tex]\pink\star[/tex] d = common difference of AP
  • [tex]\pink\star[/tex] a = first term of AP

Substituting all the given values in the formula to find the sum of arithmetic sequence :

  • [tex]\blue\star[/tex] Sₙ = 30
  • [tex]\blue\star[/tex] n = 30
  • [tex]\blue\star[/tex] d = 7
  • [tex]\blue\star[/tex] a = 6

[tex]{\implies{\sf{S_n = \dfrac{n}{2}\Big[2a + (n - 1)d\Big]}}}[/tex]

[tex]{\implies{\sf{S_{30} = \dfrac{30}{2}\Big[2 \times 6 + (30 - 1)7\Big]}}}[/tex]

[tex]{\implies{\sf{S_{30} = \dfrac{30}{2}\Big[12+ (29)7\Big]}}}[/tex]

[tex]{\implies{\sf{S_{30} = \dfrac{30}{2}\Big[12+ 29 \times 7\Big]}}}[/tex]

[tex]{\implies{\sf{S_{30} = \dfrac{30}{2}\Big[12+203\Big]}}}[/tex]

[tex]{\implies{\sf{S_{30} = \dfrac{30}{2}\Big[ \: 215 \: \Big]}}}[/tex]

[tex]{\implies{\sf{S_{30} = 15\Big[ \: 215 \: \Big]}}}[/tex]

[tex]{\implies{\sf{S_{30} = 15 \times 215}}}[/tex]

[tex]{\implies{\sf{S_{30} = 3225}}}[/tex]

[tex] \star{\underline{\boxed{\sf{S_{30} =3225}}}}[/tex]

Hence, the sum of first 30 terms of arithmetic sequence is 3225.

[tex]\rule{300}{2.5}[/tex]