Respuesta :
Answer:
Ratio of circumferences: [tex]\displaystyle\frac{1}{4}[/tex]
Ratio of radii: [tex]\displaystyle\frac{1}{4}[/tex]
Ratio of areas: [tex]\displaystyle\frac{1}{16}[/tex]
Step-by-step explanation:
Hi there!
We are given:
- The circumference of Circle K is [tex]\pi[/tex]
- The circumference of Circle L is [tex]4\pi[/tex]
Therefore, the ratio of their circumferences would be:
[tex]\displaystyle\frac{\pi}{4\pi}[/tex] ⇒ [tex]\displaystyle\frac{1}{4}[/tex] when simplified
The formula for circumference is [tex]C=2\pi r[/tex], where r is the radius. To find the ratio of the circles' radii, we must identify their radii through their given circumferences.
If the circumference of Circle K is [tex]\pi[/tex], or [tex]1\pi[/tex], then its radius is [tex]\displaystyle\frac{1}{2}[/tex].
If the circumference of Circle L is [tex]4\pi[/tex], then its radius is [tex]\displaystyle\frac{4}{2}[/tex], which is 2.
Therefore the ratio their radii would be:
[tex]\displaystyle\frac{\frac{1}{2}}{{2}}[/tex] ⇒ [tex]\displaystyle\frac{1}{2}*\frac{1}{2}[/tex] ⇒ [tex]\displaystyle\frac{1}{4}[/tex] when simplified
The formula for area is:
[tex]A=\pi r^2[/tex]
First, let's find the area of Circle K:
[tex]A=\pi (\displaystyle\frac{1}{2})^2\\\\A=\displaystyle\frac{1}{4}\pi[/tex]
Now, let's find the area of Circle L:
[tex]A=\pi (2)^2\\A = 4\pi[/tex]
Therefore, the ratio of their areas would be:
[tex]\displaystyle\frac{\frac{1}{4}\pi}{4\pi}[/tex] ⇒ [tex]\displaystyle\frac{\frac{1}{4}}{4}[/tex] ⇒ [tex]\displaystyle\frac{1}{4} * \frac{1}{4}[/tex] ⇒ [tex]\displaystyle\frac{1}{16}[/tex] when simplified
I hope this helps!