Respuesta :
Answer:
6.2 seconds
Explanation:
Given function: h(t) = – 0.145t² + 0.019t + 5.5
- Here h(t) which determines the height, when Frisbee touches the ground, the height shall be 0.
solve the quadratic equation:
using the formula: [tex]\left[\begin{array}{ccc} t = \frac{ -b \pm \sqrt{b^2 - 4ac}}{2a}\end{array}\right][/tex]
Solving steps:
→ –0.145t² + 0.019t + 5.5 = 0
→ [–0.145t² + 0.019t + 5.5 = 0 ]* 100
→ -145t² + 19t + 5500 = 0
→ [tex]t = \frac{ -19 \pm \sqrt{19^2 - 4 ( -145)(5500)}}{2(-145)}[/tex]
→ [tex]t_1=\frac{-19+\sqrt{3190361}}{2\left(-145\right)},\:t_2=\frac{-19-\sqrt{3190361}}{2\left(-145\right)}[/tex]
→ [tex]t = -6.09[/tex] , [tex]t = 6.2[/tex]
→ [tex]t = 6.2[/tex]
Time cannot be negative here.
- So time taken: 6.2 seconds.
Answer:
- D. 6.2 seconds
Step-by-step explanation:
When the frisbee hits the ground, the value of h is zero.
Find the time required:
- – 0.145t² + 0.019t + 5.5 = 0
- 145t² - 19t - 5500 = 0
- t = (19 + √(19² + 4*145*5500))/290 = (19 + 1786,1)/290 = 6.2 seconds (rounded)
- Note, taking positive root only as time is never negative