Respuesta :

Given :-

  • [tex](9^{2} )^{-1/3}[/tex]

To Find :-

  • To solve the expression .

Solution :-

Given expression to us is ,

[tex](9^{2} )^{-1/3}[/tex]

We know that ,

[tex] 9 = 3^2[/tex]

So our expression becomes ,

[tex]\{ (3^2)^2\}^{\frac{-1}{3}}[/tex]

And , [tex] (a^m)^n =a^{mn}[/tex] . Using this ,

[tex] (3^4)^{\frac{-1}{3}}[/tex]

Again using the same law ,

[tex] 3^{\frac{-4}{3}}[/tex]

We know that , [tex] a^{-m}=\frac{1}{a^m}[/tex] . Therefore ,

[tex] (3^{-4})^{\frac{1}{3}}[/tex]

[tex]\\\bigg( \dfrac{1}{3^4}\bigg)^{1/3}[/tex]

[tex]\\ \dfrac{1}{\sqrt[3]{3^4}}[/tex]

Simplify ,

[tex] \dfrac{1}{3\sqrt[3]{3}}[/tex]

This is the simplified expression.

I hope this helps.