Respuesta :
[tex] - 5x + y = 12[/tex]
Add both sides 5x
[tex] - 5x + 5x + y = 5x + 12[/tex]
[tex]y = 5x + 12[/tex]
&
[tex]y = - x[/tex]
Thus :
[tex] - x = 5x + 12[/tex]
Add both sides x
[tex] - x + x = 5x + x + 12[/tex]
[tex]0 = 6x + 12[/tex]
Subtract both sides 12
[tex]0 - 12 = 6x + 12 - 12[/tex]
[tex] - 12 = 6x[/tex]
Switch sides
[tex]6x = - 12[/tex]
Divide both sides by 6
[tex] \frac{6x}{6} = \frac{ - 12}{6} \\ [/tex]
[tex]x = - 2[/tex]
We found the x-coordinate of the solution point ; to find the y-coordinate we just need to put the value of x in one 0f the given equations :
[tex]y = - ( - 2) [/tex]
[tex]y = 2[/tex]
Thus ( - 2 , 2 ) is the solution to this system of equations.