Respuesta :

Answer:

c) x = 1 ± i √29 / 5​

Step-by-step explanation:

assuming we are solving for x we can use the quadratic formula

quadratic formula : [tex]\frac{-b+or-\sqrt{b^2-4(a)(c)} }{2(a)}[/tex]

where the values of a,b and c are derived from the equation

the equation is put in quadratic form : ax² + bx + c

so in 5x² -2x + 6 a = 5 , b = - 2 and c = 6

we then plug these values of a, b and c into the quadratic formula

recall quadratic formula [tex]\frac{-b+or-\sqrt{b^2-4(a)(c)} }{2(a)}[/tex]

a = 5 , b = - 2 , c = 6

[tex]\frac{-(-2)+or-\sqrt{(-2)^2-4(5)(6)} }{2(5)}[/tex]

remove parenthesis at -(-2) to get positive 2 because the negative signs cancel out

[tex]\frac{2+or-\sqrt{(-2)^2-4(5)(6)} }{2(5)}[/tex]

evaluate exponent

[tex]\frac{2+or-\sqrt{4-4(5)(6)} }{2(5)}[/tex]

multiply -4(5)(6)

[tex]\frac{2+or-\sqrt{4-120} }{2(5)}[/tex]

subtract 120 from 4

[tex]\frac{2+or-\sqrt{-116} }{2(5)}[/tex]

multiply 2 and 5

[tex]\frac{2+or-\sqrt{-116} }{10}[/tex]

because we cant have a negative square root we replace the negative sign with i (which equals -1 )  and add it to the outside of the square root

[tex]\frac{2+or-i\sqrt{116} }{10}[/tex]

we then simplify  the radical

[tex]\frac{2+or-2i\sqrt{29} }{10}[/tex]

we then simplify the fraction

2/10 = 1/5 so both 2's cancel out

[tex]\frac{1+or-i\sqrt{29} }{10}[/tex]

the answer is C