contestada

Pietro is planning a patio using paving stones that are circles, semicircles, and quarter-circles. All stones have a radius of 10 inches. What is the area of one pattern of stones that has 5 circles, 10 semicircles, and 100 quarter-circles? Then, select the total area.

Respuesta :

Answer:

3500[tex]\pi[/tex] = 10995.57 in³ (nearest hundredth)

Step-by-step explanation:

area of a circle = [tex]\pi r^2[/tex]

⇒ area of a semicircle = [tex]\frac{1}{2}\pi r^2[/tex]

⇒ area of a quarter circle = [tex]\frac{1}{4}\pi r^2[/tex]

total area = 5 circles + 10 semicircles + 100 quarter circles

⇒ total area = [tex]5\pi r^2 +(10\times \frac{1}{2}\pi r^2)+(100 \times \frac{1}{4}\pi r^2)[/tex]

⇒ total area = [tex]35\pi r^2[/tex]

If r = 10 inches

⇒ total area = [tex]35\pi \times 10^2=3500\pi =10995.57 \ \textsf{in}^2 \ \textsf{(nearest tenth)}[/tex]