1239508
contestada

Use the given information to prove the following theorem.
If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.
We let be any point on line , but different from point .

Use the given information to prove the following theorem If a point is on the perpendicular bisector of a segment then it is equidistant from the endpoints of t class=

Respuesta :

Let's proof

PQ is the perpendicular bisector Hence

  • CQ=DQ(Bisected sides)

Now apply Pythagorean theorem

[tex]\\ \tt\hookrightarrow PQ^2+QD^2=PD^2[/tex]--(1)

[tex]\\ \tt\hookrightarrow PQ^2+CQ^2=PC^2[/tex]

As QD=CD

[tex]\\ \tt\hookrightarrow PQ^2+QD^2=PC^2[/tex]--(2)

From (1) and (2)

[tex]\\ \tt\hookrightarrow PC^2=PD^2[/tex]

[tex]\\ \tt\hookrightarrow PC=PD[/tex]

Answer:

Given [tex]\overline{\rm PQ}[/tex] is the [tex]\perp[/tex] bisector of [tex]\overline{\rm CD}[/tex]

⇒  [tex]\overline{\rm CQ}=\overline{\rm CD}[/tex]

⇒ ΔPQD ≅ ΔPQC

⇒ CP = PD

Step-by-step explanation:

Given [tex]\overline{\rm PQ}[/tex] is the [tex]\perp[/tex] bisector of [tex]\overline{\rm CD}[/tex]

⇒  [tex]\overline{\rm CQ}=\overline{\rm CD}[/tex]

⇒ ΔPQD ≅ ΔPQC

⇒ CP = PD