Respuesta :

Answer:

D) x=9 ; y=3√(3)

Step-by-step explanation:

[tex]Sin(30)=\cfrac{y}{6\sqrt{3} }[/tex]

[tex]\cfrac{18y}{6\sqrt{3}}=18\sin \left(30^{\circ \:}\right)[/tex]

[tex]\sqrt{3}y=9[/tex]

[tex]\cfrac{\sqrt{3}y}{\sqrt{3}}=\cfrac{9}{\sqrt{3}}[/tex]

[tex]y=3\sqrt{3}[/tex]

~

[tex]Cos(30)=\cfrac{x}{6\sqrt{3} }[/tex]

[tex]\cfrac{18x}{6\sqrt{3}}=18\cos \left(30^{\circ \:}\right)[/tex]

[tex]\sqrt{3}x=9\sqrt{3}[/tex]

[tex]\cfrac{\sqrt{3}x}{\sqrt{3}}=\cfrac{9\sqrt{3}}{\sqrt{3}}[/tex]

[tex]x=9[/tex]

Therefore, x=9 and y=3√(3)

~