[tex] \tiny\int_{e}^{{e}^{2}} \left( \sqrt{x + \frac{1}{2} \sqrt{x + \frac{1}{4} \sqrt{x + \frac{1}{8} \sqrt{x + \frac{1}{16} \dots} } } } \: + \sqrt{x - \frac{1}{2} \sqrt{x - \frac{1}{4} \sqrt{x - \frac{1}{8} \sqrt{x - \frac{1}{16} \dots} } } } \right) dx \\ [/tex]

Respuesta :

We have the identity

[tex]\left(\sqrt x + \dfrac1{2^n}\right)^2 = x + \dfrac1{2^{n-1}} \sqrt x + \dfrac1{2^{2n}}[/tex]

Take the square root of both sides and rearrange terms on the right to get

[tex]\sqrt x + \dfrac1{2^n} = \sqrt{x + \dfrac1{2^{n-1}} \left(\sqrt{x} + \dfrac1{2^{n+1}}\right)}[/tex]

Decrementing n gives

[tex]\sqrt x + \dfrac1{2^{n-1}} = \sqrt{x + \dfrac1{2^{n-2}} \left(\sqrt{x} + \dfrac1{2^{n}}\right)}[/tex]

and substituting the previous expression into this, we have

[tex]\sqrt x + \dfrac1{2^{n-1}} = \sqrt{x + \dfrac1{2^{n-2}} \sqrt{x + \dfrac1{2^{n-1}} \left(\sqrt x + \dfrac1{2^{n+1}}\right) } }[/tex]

Continuing in this fashion, after k steps we would have

[tex]\sqrt x + \dfrac1{2^{n-k}} = \sqrt{x + \dfrac1{2^{n-(k+1)}} \sqrt{x + \dfrac1{2^{n-k}} \sqrt{x + \dfrac1{2^{n-(k-1)}} \sqrt{\cdots \dfrac1{2^{n-1}} \left(\sqrt x + \dfrac1{2^{n+1}}\right)}}}}[/tex]

After a total of n - 2 steps, we arrive at

[tex]\sqrt x + \dfrac14 = \sqrt{x + \dfrac12 \sqrt{x + \dfrac1{2^2} \sqrt{x + \dfrac1{2^3} \sqrt{\cdots \dfrac1{2^{n-1}} \left(\sqrt x + \dfrac1{2^{n+1}}\right)}}}}[/tex]

Then as n goes to infinity, the first nested radical converges to √x + 1/4. Similar reasoning can be used to show the other nested radical converges to √x - 1/4. Then the integral reduces to

[tex]\displaystyle \int_e^{e^2} \left(\sqrt x - \frac14\right) + \left(\sqrt x + \frac14\right) \, dx = 2 \int_e^{e^2} \sqrt x \, dx = \boxed{\frac43 \left(e^3 - e^{\frac32}\right)}[/tex]