Respuesta :

Answer:

X = ( 40/11 )

Y = ( -58/11 )

Step-by-step explanation:

6x + 3y = 6

7x + 9y = -22

-------------------------

-3(6x + 3y = 6)

= -18x - 9y = -18

-------------------------

-18x - 9y = -18

7x + 9y = -22

-11x = -40

÷-11   ÷-11

x = ( 40/11 )

------------------------

6( 40/11 ) + 3y = 6

( 240/11 ) + 3y = 6

-( 240/11 )      -( 240/11 )

3y = ( -174/11 )

÷3          ÷3

y =  ( -58/11 )

---------------------------

I hope this helps!

Answer:

[tex]x=\frac{40}{11}[/tex]
[tex]y=-\frac{58}{11}[/tex]

Step-by-step explanation:          [tex]\left \{ {{6x+3y=6} \atop {7x+9y=-22}} \right.[/tex]

Multiply both sides of the equation by a coefficient

[tex]\left \{ {{3\left(6x+3y\right)=6\times3} \atop {7x+9y=-22}} \right.[/tex]

Apply the Distributive Property
[tex]\left \{ {{18x+9y=6\times3} \atop {7x+9y=-22}} \right.[/tex]

Calculate the product or quotient

[tex]\left \{ {{18x+9y=18} \atop {7x+9y=-22}} \right.[/tex]

Subtract the two equations
[tex]18x+9y-(7x+9y)=18-(-22)[/tex]

Remove parentheses
[tex]18x+9y-7x-9y=18+22[/tex]

Cancel one variable
[tex]18x-7x=18+22[/tex]

Combine like terms
[tex]11x=18+22[/tex]

Calculate the sum or difference
[tex]11x=40[/tex]

Divide both sides of the equation by the coefficient of variable
[tex]x=\frac{40}{11}[/tex]

Substitute into one of the equations
[tex]7\times\frac{40}{11}+9y=-22[/tex]

Write as a single fraction
[tex]\frac{7\times40}{11}+9y=-22[/tex]

Calculate the product or quotient
[tex]\frac{280}{11}+9y=-22[/tex]

Multiply both sides of the equation by the common denominator
[tex]\frac{280\times11}{11}+9y\times11=-22\times11[/tex]

Reduce the fractions
[tex]280+9y\times11=-22\times11[/tex]

Multiply the monomials
[tex]280+99y=-22\times11[/tex]

Calculate the product or quotient
[tex]280+99y=-242[/tex]

Rearrange variables to the left side of the equation
[tex]99y=-242-280[/tex]

Calculate the sum or difference
[tex]99y=-522[/tex]

Divide both sides of the equation by the coefficient of variable
[tex]y=-\frac{522}{99}[/tex]

Cross out the common factor
[tex]y=-\frac{58}{11}[/tex]

The solution of the system is
[tex]\left \{ {{x=\frac{40}{11}} \atop {y=-\frac{58}{11}}} \right.[/tex]

I hope this helps you

:)