Find the value of X for the given parallelogram

Answer:
[tex] \: [/tex]
Step-by-step explanation:
Parallelogram is a quadrilateral whose both pairs of opposite sides are parallel and equal and opposite angles are also equal.
[tex] \: [/tex]
So,
[tex] \\ { \longrightarrow \qquad{ \pmb{ \sf { \angle P = \angle R}}}} \: \: \\ \\[/tex]
[tex]{ \longrightarrow \qquad{ \pmb{ \sf { 6x - 10 = 2x + 50}}}} \: \: \\ \\[/tex]
Subtracting 2x from both sides we get :
[tex] \\ { \longrightarrow \qquad{ \pmb{ \sf { 6x - 10 - 2x = 2x + 50 - 2x}}}} \: \: \\ \\[/tex]
[tex]{ \longrightarrow \qquad{ \pmb{ \sf { 4x - 10 = 50 }}}} \: \: \\ \\[/tex]
Adding 10 to both sides we get :
[tex] \\ { \longrightarrow \qquad{ \pmb{ \sf { 4x - 10 + 10 = 50 + 10 }}}} \: \: \\ \\[/tex]
[tex]{ \longrightarrow \qquad{ \pmb{ \sf { 4x = 60 }}}} \: \: \\ \\[/tex]
Dividing 4 from both sides we get :
[tex]{ \longrightarrow \qquad{ \pmb{ \sf { \frac{4x}{4} = \frac{60}{4} }}}} \: \: \\ \\[/tex]
[tex]{ \longrightarrow \qquad{ \pmb{ \frak { x = 15 }}}} \: \: \\ \\[/tex]
Therefore,