Respuesta :

Opposite angles in a parallelogram are congruent

So,


6x-10 = 2x + 50

Now solve like a normal equation

4x = 60
x = 15

Answer:

  • 15

[tex] \: [/tex]

Step-by-step explanation:

Parallelogram is a quadrilateral whose both pairs of opposite sides are parallel and equal and opposite angles are also equal.

[tex] \: [/tex]

So,

[tex] \\ { \longrightarrow \qquad{ \pmb{ \sf { \angle P = \angle R}}}} \: \: \\ \\[/tex]

[tex]{ \longrightarrow \qquad{ \pmb{ \sf { 6x - 10 = 2x + 50}}}} \: \: \\ \\[/tex]

Subtracting 2x from both sides we get :

[tex] \\ { \longrightarrow \qquad{ \pmb{ \sf { 6x - 10 - 2x = 2x + 50 - 2x}}}} \: \: \\ \\[/tex]

[tex]{ \longrightarrow \qquad{ \pmb{ \sf { 4x - 10 = 50 }}}} \: \: \\ \\[/tex]

Adding 10 to both sides we get :

[tex] \\ { \longrightarrow \qquad{ \pmb{ \sf { 4x - 10 + 10 = 50 + 10 }}}} \: \: \\ \\[/tex]

[tex]{ \longrightarrow \qquad{ \pmb{ \sf { 4x = 60 }}}} \: \: \\ \\[/tex]

Dividing 4 from both sides we get :

[tex]{ \longrightarrow \qquad{ \pmb{ \sf { \frac{4x}{4} = \frac{60}{4} }}}} \: \: \\ \\[/tex]

[tex]{ \longrightarrow \qquad{ \pmb{ \frak { x = 15 }}}} \: \: \\ \\[/tex]

Therefore,

  • The value of x is 15