Respuesta :
Answer:
The area of a triangle can be determined with the two side lengths, the length and breadth/width multiplied.
x = unknown value of breadth/width
23 = length
506 = the area of the two lengths multiplied
23(x) = 506
/23 /23
x = 22, 22 metres is it's breadth.
Answer:
22m is the breadth of the rectangle.
Step-by-step explanation:
Given:
- Area of Rectangle is 506 m² .
- Length of the Rectangle is 23m.
[tex] \: [/tex]
To Find:
- Breadth of the rectangle.
[tex] \: [/tex]
Solution:
As, we know,
[tex]{ \boxed{ \pink{Area _{(rectangle)} \: = length \times breadth}}}[/tex]
➝ 506m² = l × b
➝ 506m² = 23 × b
➝ b = 506/23 = 22
Hence, Breadth of the Rectangle is 22m.
[tex] \: [/tex]
Check:
Area = length × breadth
➝ 23 × 22
➝ 506m²
______________________
[tex]{ \sf{Additional \: Information}}[/tex]
[tex]\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf{ \green{ Formulas\:of\:Areas:-}}}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}[/tex]