Respuesta :

Let's factorise it :

[tex]\: {\qquad \dashrightarrow \sf ( {x}^{3} - 5)(x + 3) }[/tex]

[tex]\: {\qquad \dashrightarrow \sf {x}^{3} (x + 3) + [-5(x + 3)] }[/tex]

Using Distributive property we get :

[tex]\: {\qquad \dashrightarrow \sf {x}^{3} + {3x}^{3} + ( - 5x - 15) }[/tex]

[tex]\: {\qquad \dashrightarrow \sf {x}^{3} + {3x}^{3} - 5x - 15 }[/tex]

[tex]\: {\qquad \dashrightarrow \sf 4{x}^{3} - 5x - 15 }[/tex]

Therefore,

[tex]\: {\qquad \dashrightarrow \sf ( {x}^{3} - 5)(x + 3) =4{x}^{3} - 5x - 15}[/tex]